polyround.scad 25 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
// Library: round-anything
// Version: 1.0
// Author: IrevDev
// Contributors: TLC123
// Copyright: 2017
// License: GPL 3


    
//examples();
module examples(){
  //Example of how a parametric part might be designed with this tool 
  width=20;       height=25;
  slotW=8;        slotH=15;
  slotPosition=8;
  minR=1.5;       farcornerR=6;
  internalR=3;
  points=[
    [0,                   0,              farcornerR],
    [0,                   height,         minR],
    [slotPosition,        height,         minR],
    [slotPosition,        height-slotH,   internalR],
    [slotPosition+slotW,  height-slotH,   internalR],
    [slotPosition+slotW,  height,         minR],
    [width,               height,         minR],
    [width,               0,              minR]
  ];
  points2=[
    [0,                   0,              farcornerR],
    ["l",                 height,         minR],
    [slotPosition,        "l",            minR],
    ["l",                 height-slotH,   internalR],
    [slotPosition+slotW,  "l",            internalR],
    ["l",                 height,         minR],
    [width,               "l",            minR],
    ["l",                 height*0.2,     minR],
    [45,                  0,              minR+5,         "ayra"]
  ];//,["l",0,minR]];
  echo(processRadiiPoints(points2));
  translate([-25,0,0]){
    polygon(polyRound(points,5));
  }
  %translate([-25,0,0.2]){
    polygon(getpoints(points));//transparent copy of the polgon without rounding
  }
  translate([-50,0,0]){
    polygon(polyRound(points2,5));
  }
  %translate([-50,0,0.2]){ 
    polygon(getpoints(processRadiiPoints(points2)));//transparent copy of the polgon without rounding
  }
  //Example of features 2
  //     1        2         3         4          5        6     
  b=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]]; //points
  polygon(polyRound(b,30));/*polycarious() will make the same shape but doesn't have radii conflict handling*/ //polygon(polycarious(b,30));
  %translate([0,0,0.3])polygon(getpoints(b));//transparent copy of the polgon without rounding
      
  //Example of features 3
  //    1          2        3        4         5       6
  p=[[0,0,1.2],[0,20,1],[15,15,1],[3,10,3],[15,0,1],[6,2,10]];//points
  a=polyRound(p,5);
  translate([25,0,0]){
    polygon(a);
  }
  %translate([25,0,0.2]){
    polygon(getpoints(p));//transparent copy of the polgon without rounding
  }
  //example of radii conflict handling and debuging feature
  r1a=10;			r1b=10;
  r2a=30;			r2b=30;
  r3a=10;			r3b=40;
      r4a=15;         r4b=20;
  c1=[[0,0,0],[0,20,r1a],[20,20,r1b],[20,0,0]];//both radii fit and don't need to be changed
  translate([-25,-30,0]){
    polygon(polyRound(c1,8));
  }
  echo(str("c1 debug= ",polyRound(c1,8,mode=1)," all zeros indicates none of the radii were reduced")); 
  
  c2=[[0,0,0],[0,20,r2a],[20,20,r2b],[20,0,0]];//radii are too large and are reduced to fit
  translate([0,-30,0]){
    polygon(polyRound(c2,8));
  }
  echo(str("c2 debug= ",polyRound(c2,8,mode=1)," 2nd and 3rd radii reduced by 20mm i.e. from 30 to 10mm radius"));
  
  c3=[[0,0,0],[0,20,r3a],[20,20,r3b],[20,0,0]];//radii are too large again and are reduced to fit, but keep their ratios
  translate([25,-30,0]){
    polygon(polyRound(c3,8));
  }
  echo(str("c3 debug= ",polyRound(c3,8,mode=1)," 2nd and 3rd radii reduced by 6 and 24mm respectively"));
  //resulting in radii of 4 and 16mm, 
  //notice the ratio from the orginal radii stays the same r3a/r3b = 10/40 = 4/16
      c4=[[0,0,0],[0,20,r4a],[20,20,r4b],[20,0,0]];//radii are too large again but not corrected this time
  translate([50,-30,0]){
    polygon(polyRound(c4,8,mode=2));//mode 2 = no radii limiting
  }
      
  //example of rounding random points, this has no current use but is a good demonstration
  random=[for(i=[0:20])[rnd(0,50),rnd(0,50),/*rnd(0,30)*/1000]];
  R =polyRound(random,7);
  translate([-25,25,0]){
    polyline(R);
  }
  
  //example of different modes of the CentreN2PointsArc() function 0=shortest arc, 1=longest arc, 2=CW, 3=CCW
  p1=[0,5];p2=[10,5];centre=[5,0];
  translate([60,0,0]){
    color("green"){
      polygon(CentreN2PointsArc(p1,p2,centre,0,20));//draws the shortest arc
    }
    color("cyan"){
      polygon(CentreN2PointsArc(p1,p2,centre,1,20));//draws the longest arc
    }
  }
  translate([75,0,0]){
    color("purple"){
      polygon(CentreN2PointsArc(p1,p2,centre,2,20));//draws the arc CW (which happens to be the short arc)
    }
    color("red"){
      polygon(CentreN2PointsArc(p2,p1,centre,2,20));//draws the arc CW but p1 and p2 swapped order resulting in the long arc being drawn
    }
  }
  
  radius=6;
  radiipoints=[[0,0,0],[10,20,radius],[20,0,0]];
  tangentsNcen=round3points(radiipoints);
  translate([100,0,0]){
    for(i=[0:2]){
      color("red")translate(getpoints(radiipoints)[i])circle(1);//plots the 3 input points
      color("cyan")translate(tangentsNcen[i])circle(1);//plots the two tangent poins and the circle centre
    }
    translate([tangentsNcen[2][0],tangentsNcen[2][1],-0.2])circle(r=radius,$fn=25);//draws the cirle
    %polygon(getpoints(radiipoints));//draws a polygon
  }
      
  //for(i=[0:len(b2)-1]) translate([b2[i].x,b2[i].y,2])#circle(0.2);
  ex=[[0,0,-1],[2,8,0],[5,4,3],[15,10,0.5],[10,2,1]];
  translate([15,-50,0]){
    ang=55;
    minR=0.2;
    rotate([0,0,ang+270])translate([0,-5,0])square([10,10],true);
    clipP=[[9,1,0],[9,0,0],[9.5,0,0],[9.5,1,0.2],[10.5,1,0.2],[10.5,0,0],[11,0,0],[11,1,0]];
    a=RailCustomiser(ex,o1=0.5,minR=minR,a1=ang-90,a2=0,mode=2);
    b=revList(RailCustomiser(ex,o1=-0.5,minR=minR,a1=ang-90,a2=0,mode=2));
    points=concat(a,clipP,b);
    points2=concat(ex,clipP,b);
    polygon(polyRound(points,20));
    //%polygon(polyRound(points2,20));
  }
  
  //the following exapmle shows how the offsets in RailCustomiser could be used to makes shells
  translate([-20,-60,0]){
      for(i=[-9:0.5:1])polygon(polyRound(RailCustomiser(ex,o1=i-0.4,o2=i,minR=0.1),20));
  }
  
  // This example shows how a list of points can be used multiple times in the same 
  nutW=5.5;   nutH=3; boltR=1.6;
  minT=2;     minR=0.8;
  nutCapture=[
    [-boltR,        0,         0],
    [-boltR,        minT,      0],
    [-nutW/2,       minT,      minR],
    [-nutW/2,       minT+nutH, minR],
    [nutW/2,        minT+nutH, minR],
    [nutW/2,        minT,      minR],
    [boltR,         minT,      0],
    [boltR,         0,         0],
  ];
  aSquare=concat(
    [[0,0,0]],
    moveRadiiPoints(nutCapture,tran=[5,0],rot=0),
    [[20,0,0]],
    moveRadiiPoints(nutCapture,tran=[20,5],rot=90),
    [[20,10,0]],
    [[0,10,0]]
  );
  echo(aSquare);
  translate([40,-60,0]){
    polygon(polyRound(aSquare,20));
    translate([10,12,0])polygon(polyRound(nutCapture,20));
  }        
  
  translate([70,-52,0]){
    a=mirrorPoints(ex,0,[1,0]);
    polygon(polyRound(a,20));
  }

  
  translate([0,-90,0]){
    r_extrude(3,0.5*$t,0.5*$t,100)polygon(polyRound(b,30));
    #translate([7,4,3])r_extrude(3,-0.5,0.95,100)circle(1,$fn=30);
  }

  translate([-30,-90,0])
  shell2d(-0.5,0,0)polygon(polyRound(b,30));
}

function polyRound(radiipoints,fn=5,mode=0)=
  /*Takes a list of radii points of the format [x,y,radius] and rounds each point
    with fn resolution
    mode=0 - automatic radius limiting - DEFAULT
    mode=1 - Debug, output radius reduction for automatic radius limiting
    mode=2 - No radius limiting*/
  let(
    getpoints=mode==2?1:2,
    p=getpoints(radiipoints), //make list of coordinates without radii
    Lp=len(p),
    //remove the middle point of any three colinear points
    newrp=[
      for(i=[0:len(p)-1]) if(isColinear(p[wrap(i-1,Lp)],p[wrap(i+0,Lp)],p[wrap(i+1,Lp)])==0||p[wrap(i+0,Lp)].z!=0)radiipoints[wrap(i+0,Lp)] 
    ],
    newrp2=processRadiiPoints(newrp),
    temp=[
      for(i=[0:len(newrp2)-1]) //for each point in the radii array
      let(
        thepoints=[for(j=[-getpoints:getpoints])newrp2[wrap(i+j,len(newrp2))]],//collect 5 radii points
        temp2=mode==2?round3points(thepoints,fn):round5points(thepoints,fn,mode)
      )
      mode==1?temp2:newrp2[i][2]==0?
        [[newrp2[i][0],newrp2[i][1]]]: //return the original point if the radius is 0
        CentreN2PointsArc(temp2[0],temp2[1],temp2[2],0,fn) //return the arc if everything is normal
    ]
  )
  [for (a = temp) for (b = a) b];//flattern and return the array

function round5points(rp,fn,debug=0)=
	rp[2][2]==0&&debug==0?[[rp[2][0],rp[2][1]]]://return the middle point if the radius is 0
	rp[2][2]==0&&debug==1?0://if debug is enabled and the radius is 0 return 0
	let(
    p=getpoints(rp), //get list of points
    r=[for(i=[1:3]) abs(rp[i][2])],//get the centre 3 radii
    //start by determining what the radius should be at point 3
    //find angles at points 2 , 3 and 4
    a2=cosineRuleAngle(p[0],p[1],p[2]),
    a3=cosineRuleAngle(p[1],p[2],p[3]),
    a4=cosineRuleAngle(p[2],p[3],p[4]),
    //find the distance between points 2&3 and between points 3&4
    d23=pointDist(p[1],p[2]),
    d34=pointDist(p[2],p[3]),
    //find the radius factors
    F23=(d23*tan(a2/2)*tan(a3/2))/(r[0]*tan(a3/2)+r[1]*tan(a2/2)),
    F34=(d34*tan(a3/2)*tan(a4/2))/(r[1]*tan(a4/2)+r[2]*tan(a3/2)),
    newR=min(r[1],F23*r[1],F34*r[1]),//use the smallest radius
    //now that the radius has been determined, find tangent points and circle centre
    tangD=newR/tan(a3/2),//distance to the tangent point from p3
      circD=newR/sin(a3/2),//distance to the circle centre from p3
    //find the angle from the p3
    an23=getAngle(p[1],p[2]),//angle from point 3 to 2
    an34=getAngle(p[3],p[2]),//angle from point 3 to 4
    //find tangent points
    t23=[p[2][0]-cos(an23)*tangD,p[2][1]-sin(an23)*tangD],//tangent point between points 2&3
    t34=[p[2][0]-cos(an34)*tangD,p[2][1]-sin(an34)*tangD],//tangent point between points 3&4
    //find circle centre
    tmid=getMidpoint(t23,t34),//midpoint between the two tangent points
    anCen=getAngle(tmid,p[2]),//angle from point 3 to circle centre
    cen=[p[2][0]-cos(anCen)*circD,p[2][1]-sin(anCen)*circD]
  )
    //circle center by offseting from point 3
    //determine the direction of rotation
	debug==1?//if debug in disabled return arc (default)
    (newR-r[1]):
	[t23,t34,cen];

function round3points(rp,fn)=
  rp[1][2]==0?[[rp[1][0],rp[1][1]]]://return the middle point if the radius is 0
	let(
    p=getpoints(rp), //get list of points
	  r=rp[1][2],//get the centre 3 radii
    ang=cosineRuleAngle(p[0],p[1],p[2]),//angle between the lines
    //now that the radius has been determined, find tangent points and circle centre
	  tangD=r/tan(ang/2),//distance to the tangent point from p2
    circD=r/sin(ang/2),//distance to the circle centre from p2
    //find the angles from the p2 with respect to the postitive x axis
    a12=getAngle(p[0],p[1]),//angle from point 2 to 1
    a23=getAngle(p[2],p[1]),//angle from point 2 to 3
    //find tangent points
    t12=[p[1][0]-cos(a12)*tangD,p[1][1]-sin(a12)*tangD],//tangent point between points 1&2
    t23=[p[1][0]-cos(a23)*tangD,p[1][1]-sin(a23)*tangD],//tangent point between points 2&3
    //find circle centre
    tmid=getMidpoint(t12,t23),//midpoint between the two tangent points
    angCen=getAngle(tmid,p[1]),//angle from point 2 to circle centre
    cen=[p[1][0]-cos(angCen)*circD,p[1][1]-sin(angCen)*circD] //circle center by offseting from point 2 
  )
	[t12,t23,cen];

function parallelFollow(rp,thick=4,minR=1,mode=1)=
    //rp[1][2]==0?[rp[1][0],rp[1][1],0]://return the middle point if the radius is 0
    thick==0?[rp[1][0],rp[1][1],0]://return the middle point if the radius is 0
	let(
    p=getpoints(rp), //get list of points
	  r=thick,//get the centre 3 radii
    ang=cosineRuleAngle(p[0],p[1],p[2]),//angle between the lines
    //now that the radius has been determined, find tangent points and circle centre
    tangD=r/tan(ang/2),//distance to the tangent point from p2
  	sgn=CWorCCW(rp),//rotation of the three points cw or ccw?let(sgn=mode==0?1:-1)
    circD=mode*sgn*r/sin(ang/2),//distance to the circle centre from p2
    //find the angles from the p2 with respect to the postitive x axis
    a12=getAngle(p[0],p[1]),//angle from point 2 to 1
    a23=getAngle(p[2],p[1]),//angle from point 2 to 3
    //find tangent points
    t12=[p[1][0]-cos(a12)*tangD,p[1][1]-sin(a12)*tangD],//tangent point between points 1&2
	  t23=[p[1][0]-cos(a23)*tangD,p[1][1]-sin(a23)*tangD],//tangent point between points 2&3
    //find circle centre
    tmid=getMidpoint(t12,t23),//midpoint between the two tangent points
    angCen=getAngle(tmid,p[1]),//angle from point 2 to circle centre
    cen=[p[1][0]-cos(angCen)*circD,p[1][1]-sin(angCen)*circD],//circle center by offseting from point 2 
    outR=max(minR,rp[1][2]-thick*sgn*mode) //ensures radii are never too small.
  )
	concat(cen,outR);

function findPoint(ang1,refpoint1,ang2,refpoint2,r=0)=
  let(
    m1=tan(ang1),
    c1=refpoint1.y-m1*refpoint1.x,
	  m2=tan(ang2),
    c2=refpoint2.y-m2*refpoint2.x,
    outputX=(c2-c1)/(m1-m2),
    outputY=m1*outputX+c1
  )
	[outputX,outputY,r];

function RailCustomiser(rp,o1=0,o2,mode=0,minR=0,a1,a2)= 
  /*This function takes a series of radii points and plots points to run along side at a constanit distance, think of it as offset but for line instead of a polygon
  rp=radii points, o1&o2=offset 1&2,minR=min radius, a1&2=angle 1&2
  mode=1 - include endpoints a1&2 are relative to the angle of the last two points and equal 90deg if not defined
  mode=2 - endpoints not included
  mode=3 - include endpoints a1&2 are absolute from the x axis and are 0 if not defined
  negative radiuses only allowed for the first and last radii points
  
  As it stands this function could probably be tidied a lot, but it works, I'll tidy later*/
  let(
    o2undef=o2==undef?1:0,
    o2=o2undef==1?0:o2,
    CWorCCW1=sign(o1)*CWorCCW(rp),
    CWorCCW2=sign(o2)*CWorCCW(rp),
    o1=abs(o1),
    o2b=abs(o2),
    Lrp3=len(rp)-3,
    Lrp=len(rp),
    a1=mode==0&&a1==undef?
      getAngle(rp[0],rp[1])+90:
      mode==2&&a1==undef?
      0:
      mode==0?
      getAngle(rp[0],rp[1])+a1:
      a1,
    a2=mode==0&&a2==undef?
            getAngle(rp[Lrp-1],rp[Lrp-2])+90:
        mode==2&&a2==undef?
            0:
        mode==0?
            getAngle(rp[Lrp-1],rp[Lrp-2])+a2:
            a2,
    OffLn1=[for(i=[0:Lrp3]) o1==0?rp[i+1]:parallelFollow([rp[i],rp[i+1],rp[i+2]],o1,minR,mode=CWorCCW1)],
    OffLn2=[for(i=[0:Lrp3]) o2==0?rp[i+1]:parallelFollow([rp[i],rp[i+1],rp[i+2]],o2b,minR,mode=CWorCCW2)],  
    Rp1=abs(rp[0].z),
    Rp2=abs(rp[Lrp-1].z),
    endP1a=findPoint(getAngle(rp[0],rp[1]),         OffLn1[0],              a1,rp[0],     Rp1),
    endP1b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]), OffLn1[len(OffLn1)-1],  a2,rp[Lrp-1], Rp2),
    endP2a=findPoint(getAngle(rp[0],rp[1]),         OffLn2[0],              a1,rp[0],     Rp1),
    endP2b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]), OffLn2[len(OffLn1)-1],  a2,rp[Lrp-1], Rp2),
    absEnda=getAngle(endP1a,endP2a),
    absEndb=getAngle(endP1b,endP2b),
    negRP1a=[cos(absEnda)*rp[0].z*10+endP1a.x,        sin(absEnda)*rp[0].z*10+endP1a.y,       0.0],
    negRP2a=[cos(absEnda)*-rp[0].z*10+endP2a.x,       sin(absEnda)*-rp[0].z*10+endP2a.y,      0.0],
    negRP1b=[cos(absEndb)*rp[Lrp-1].z*10+endP1b.x,    sin(absEndb)*rp[Lrp-1].z*10+endP1b.y,   0.0],
    negRP2b=[cos(absEndb)*-rp[Lrp-1].z*10+endP2b.x,   sin(absEndb)*-rp[Lrp-1].z*10+endP2b.y,  0.0],
    OffLn1b=(mode==0||mode==2)&&rp[0].z<0&&rp[Lrp-1].z<0?
        concat([negRP1a],[endP1a],OffLn1,[endP1b],[negRP1b])
      :(mode==0||mode==2)&&rp[0].z<0?
        concat([negRP1a],[endP1a],OffLn1,[endP1b])
      :(mode==0||mode==2)&&rp[Lrp-1].z<0?
        concat([endP1a],OffLn1,[endP1b],[negRP1b])
      :mode==0||mode==2?
        concat([endP1a],OffLn1,[endP1b])
      :
        OffLn1,
    OffLn2b=(mode==0||mode==2)&&rp[0].z<0&&rp[Lrp-1].z<0?
        concat([negRP2a],[endP2a],OffLn2,[endP2b],[negRP2b])
      :(mode==0||mode==2)&&rp[0].z<0?
        concat([negRP2a],[endP2a],OffLn2,[endP2b])
      :(mode==0||mode==2)&&rp[Lrp-1].z<0?
        concat([endP2a],OffLn2,[endP2b],[negRP2b])
      :mode==0||mode==2?
        concat([endP2a],OffLn2,[endP2b])
      :
        OffLn2
    )//end of let()
  o2undef==1?OffLn1b:concat(OffLn2b,revList(OffLn1b));
    
function revList(list)=//reverse list
  let(Llist=len(list)-1)
  [for(i=[0:Llist]) list[Llist-i]];

function CWorCCW(p)=
	let(
    Lp=len(p),
	  e=[for(i=[0:Lp-1]) 
      (p[wrap(i+0,Lp)].x-p[wrap(i+1,Lp)].x)*(p[wrap(i+0,Lp)].y+p[wrap(i+1,Lp)].y)
    ]
  )  
  sign(sum(e));

function CentreN2PointsArc(p1,p2,cen,mode=0,fn)=
  /* This function plots an arc from p1 to p2 with fn increments using the cen as the centre of the arc.
  the mode determines how the arc is plotted
  mode==0, shortest arc possible 
  mode==1, longest arc possible
  mode==2, plotted clockwise
  mode==3, plotted counter clockwise
  */
	let(
    CWorCCW=CWorCCW([cen,p1,p2]),//determine the direction of rotation
    //determine the arc angle depending on the mode
    p1p2Angle=cosineRuleAngle(p2,cen,p1),
    arcAngle=
      mode==0?p1p2Angle:
      mode==1?p1p2Angle-360:
      mode==2&&CWorCCW==-1?p1p2Angle:
      mode==2&&CWorCCW== 1?p1p2Angle-360:
      mode==3&&CWorCCW== 1?p1p2Angle:
      mode==3&&CWorCCW==-1?p1p2Angle-360:
      cosineRuleAngle(p2,cen,p1)
    ,
    r=pointDist(p1,cen),//determine the radius
	  p1Angle=getAngle(cen,p1) //angle of line 1
  )
  [for(i=[0:fn]) [cos(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[0],sin(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[1]]];

function moveRadiiPoints(rp,tran=[0,0],rot=0)=
	[for(i=rp) 
		let(
      a=getAngle([0,0],[i.x,i.y]),//get the angle of the this point
		  h=pointDist([0,0],[i.x,i.y]) //get the hypotenuse/radius
    )
		[h*cos(a+rot)+tran.x,h*sin(a+rot)+tran.y,i.z]//calculate the point's new position
	];

module round2d(OR=3,IR=1){
  offset(OR){
    offset(-IR-OR){
      offset(IR){
        children();
      }
    }
  }
}

module shell2d(o1,OR=0,IR=0,o2=0){
	difference(){
		round2d(OR,IR){
      offset(max(o1,o2)){
        children(0);//original 1st child forms the outside of the shell
      }
    }
		round2d(IR,OR){
      difference(){//round the inside cutout
        offset(min(o1,o2)){
          children(0);//shrink the 1st child to form the inside of the shell 
        }
        if($children>1){
          for(i=[1:$children-1]){
            children(i);//second child and onwards is used to add material to inside of the shell
          }
        }
      }
		}
	}
}

module internalSq(size,r,center=0){
    tran=center==1?[0,0]:size/2;
    translate(tran){
      square(size,true);
      offs=sin(45)*r;
      for(i=[-1,1],j=[-1,1]){
        translate([(size.x/2-offs)*i,(size.y/2-offs)*j])circle(r);
      }
    }
}

module r_extrude(ln,r1=0,r2=0,fn=30){
  n1=sign(r1);n2=sign(r2);
  r1=abs(r1);r2=abs(r2);
  translate([0,0,r1]){
    linear_extrude(ln-r1-r2){
      children();
    }
  }
  for(i=[0:1/fn:1]){
    translate([0,0,i*r1]){
      linear_extrude(r1/fn){
        offset(n1*sqrt(sq(r1)-sq(r1-i*r1))-n1*r1){
          children();
        }
      }
    }
    translate([0,0,ln-r2+i*r2]){
      linear_extrude(r2/fn){
        offset(n2*sqrt(sq(r2)-sq(i*r2))-n2*r2){
          children();
        }
      }
    }
  }
}

function mirrorPoints(b,rot=0,atten=[0,0])= //mirrors a list of points about Y, ignoring the first and last points and returning them in reverse order for use with polygon or polyRound
  let(
    a=moveRadiiPoints(b,[0,0],-rot),
    temp3=[for(i=[0+atten[0]:len(a)-1-atten[1]])
      [a[i][0],-a[i][1],a[i][2]]
    ],
    temp=moveRadiiPoints(temp3,[0,0],rot),
    temp2=revList(temp3)
  )    
  concat(b,temp2);

function processRadiiPoints(rp)=
  [for(i=[0:len(rp)-1]) 
    processRadiiPoints2(rp,i)
  ];

function processRadiiPoints2(list,end=0,idx=0,result=0)=
  idx>=end+1?result:
  processRadiiPoints2(list,end,idx+1,relationalRadiiPoints(result,list[idx]));

function cosineRuleBside(a,c,C)=c*cos(C)-sqrt(sq(a)+sq(c)+sq(cos(C))-sq(c));

function absArelR(po,pn)=
  let(
    th2=atan(po[1]/po[0]),
    r2=sqrt(sq(po[0])+sq(po[1])),
    r3=cosineRuleBside(r2,pn[1],th2-pn[0])
  )
  [cos(pn[0])*r3,sin(pn[0])*r3,pn[2]];

function relationalRadiiPoints(po,pi)=
  let(
    p0=pi[0],
    p1=pi[1],
    p2=pi[2],
    pv0=pi[3][0],
    pv1=pi[3][1],
    pt0=pi[3][2],
    pt1=pi[3][3],
    pn=
      (pv0=="y"&&pv1=="x")||(pv0=="r"&&pv1=="a")||(pv0=="y"&&pv1=="a")||(pv0=="x"&&pv1=="a")||(pv0=="y"&&pv1=="r")||(pv0=="x"&&pv1=="r")?
        [p1,p0,p2,concat(pv1,pv0,pt1,pt0)]:
        [p0,p1,p2,concat(pv0,pv1,pt0,pt1)],
    n0=pn[0],
    n1=pn[1],
    n2=pn[2],
    nv0=pn[3][0],
    nv1=pn[3][1],
    nt0=pn[3][2],
    nt1=pn[3][3],
    temp=
      pn[0]=="l"?
        [po[0],pn[1],pn[2]]
      :pn[1]=="l"?
        [pn[0],po[1],pn[2]]
      :nv0==undef?
        [pn[0],pn[1],pn[2]]//abs x, abs y as default when undefined
      :nv0=="a"?
        nv1=="r"?
          nt0=="a"?
            nt1=="a"||nt1==undef?
              [cos(n0)*n1,sin(n0)*n1,n2]//abs angle, abs radius
            :absArelR(po,pn)//abs angle rel radius
          :nt1=="r"||nt1==undef?
            [po[0]+cos(pn[0])*pn[1],po[1]+sin(pn[0])*pn[1],pn[2]]//rel angle, rel radius 
          :[pn[0],pn[1],pn[2]]//rel angle, abs radius
        :nv1=="x"?
          nt0=="a"?
            nt1=="a"||nt1==undef?
              [pn[1],pn[1]*tan(pn[0]),pn[2]]//abs angle, abs x
            :[po[0]+pn[1],(po[0]+pn[1])*tan(pn[0]),pn[2]]//abs angle rel x
            :nt1=="r"||nt1==undef?
              [po[0]+pn[1],po[1]+pn[1]*tan(pn[0]),pn[2]]//rel angle, rel x 
            :[pn[1],po[1]+(pn[1]-po[0])*tan(pn[0]),pn[2]]//rel angle, abs x
          :nt0=="a"?
            nt1=="a"||nt1==undef?
              [pn[1]/tan(pn[0]),pn[1],pn[2]]//abs angle, abs y
            :[(po[1]+pn[1])/tan(pn[0]),po[1]+pn[1],pn[2]]//abs angle rel y
          :nt1=="r"||nt1==undef?
            [po[0]+(pn[1]-po[0])/tan(90-pn[0]),po[1]+pn[1],pn[2]]//rel angle, rel y 
          :[po[0]+(pn[1]-po[1])/tan(pn[0]),pn[1],pn[2]]//rel angle, abs y
      :nv0=="r"?
        nv1=="x"?
          nt0=="a"?
            nt1=="a"||nt1==undef?
              [pn[1],sign(pn[0])*sqrt(sq(pn[0])-sq(pn[1])),pn[2]]//abs radius, abs x
            :[po[0]+pn[1],sign(pn[0])*sqrt(sq(pn[0])-sq(po[0]+pn[1])),pn[2]]//abs radius rel x
          :nt1=="r"||nt1==undef?
            [po[0]+pn[1],po[1]+sign(pn[0])*sqrt(sq(pn[0])-sq(pn[1])),pn[2]]//rel radius, rel x 
          :[pn[1],po[1]+sign(pn[0])*sqrt(sq(pn[0])-sq(pn[1]-po[0])),pn[2]]//rel radius, abs x
        :nt0=="a"?
          nt1=="a"||nt1==undef?
            [sign(pn[0])*sqrt(sq(pn[0])-sq(pn[1])),pn[1],pn[2]]//abs radius, abs y
          :[sign(pn[0])*sqrt(sq(pn[0])-sq(po[1]+pn[1])),po[1]+pn[1],pn[2]]//abs radius rel y
        :nt1=="r"||nt1==undef?
          [po[0]+sign(pn[0])*sqrt(sq(pn[0])-sq(pn[1])),po[1]+pn[1],pn[2]]//rel radius, rel y 
        :[po[0]+sign(pn[0])*sqrt(sq(pn[0])-sq(pn[1]-po[1])),pn[1],pn[2]]//rel radius, abs y
      :nt0=="a"?
        nt1=="a"||nt1==undef?
          [pn[0],pn[1],pn[2]]//abs x, abs y
        :[pn[0],po[1]+pn[1],pn[2]]//abs x rel y
      :nt1=="r"||nt1==undef?
        [po[0]+pn[0],po[1]+pn[1],pn[2]]//rel x, rel y 
      :[po[0]+pn[0],pn[1],pn[2]]//rel x, abs y
  )
  temp;

function invtan(run,rise)=
  let(a=abs(atan(rise/run)))
  rise==0&&run>0?
    0:rise>0&&run>0?
    a:rise>0&&run==0?
    90:rise>0&&run<0?
    180-a:rise==0&&run<0?
    180:rise<0&&run<0?
    a+180:rise<0&&run==0?
    270:rise<0&&run>0?
    360-a:"error";

function cosineRuleAngle(p1,p2,p3)=
  let(
    p12=abs(pointDist(p1,p2)),
    p13=abs(pointDist(p1,p3)),
    p23=abs(pointDist(p2,p3))
  )
  acos((sq(p23)+sq(p12)-sq(p13))/(2*p23*p12));

function sum(list, idx = 0, result = 0) = 
	idx >= len(list) ? result : sum(list, idx + 1, result + list[idx]);

function sq(x)=x*x;
function getGradient(p1,p2)=(p2.y-p1.y)/(p2.x-p1.x);
function getAngle(p1,p2)=p1==p2?0:invtan(p2[0]-p1[0],p2[1]-p1[1]);
function getMidpoint(p1,p2)=[(p1[0]+p2[0])/2,(p1[1]+p2[1])/2]; //returns the midpoint of two points
function pointDist(p1,p2)=sqrt(abs(sq(p1[0]-p2[0])+sq(p1[1]-p2[1]))); //returns the distance between two points
function isColinear(p1,p2,p3)=getGradient(p1,p2)==getGradient(p2,p3)?1:0;//return 1 if 3 points are colinear
module polyline(p) {
  for(i=[0:max(0,len(p)-1)]){
    line(p[i],p[wrap(i+1,len(p) )]);
  }
} // polyline plotter
module line(p1, p2 ,width=0.3) { // single line plotter
  hull() {
    translate(p1){
      circle(width);
    }
    translate(p2){
      circle(width);
    }
  }
}

function getpoints(p)=[for(i=[0:len(p)-1])[p[i].x,p[i].y]];// gets [x,y]list of[x,y,r]list
function wrap(x,x_max=1,x_min=0) = (((x - x_min) % (x_max - x_min)) + (x_max - x_min)) % (x_max - x_min) + x_min; // wraps numbers inside boundaries
function rnd(a = 1, b = 0, s = []) = 
  s == [] ? 
    (rands(min(a, b), max(   a, b), 1)[0]):(rands(min(a, b), max(a, b), 1, s)[0]); // nice rands wrapper